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I. INTRODUCTION

This report summarizes the results obtained during the first year
of a continuing effort on the general topic of discrete approximations
for real-time flight simulation. The report is divided into five major
topics as follows:

1. Digital Autopilot Modelling--consideration of the particular

probiem of approximation of continuous autopilots by digital autopilots.

2. Frequency Domain Synthesis of Discrete Representations--use of
Bode plots and synthesis of transfer functions by asymptotic fits in
a warped frequency domain.

3. Substitutional Methods--an investigation of the various sub-

stitution formulas, including the effects of nonlinearities.

4. Use of Pade approximation to the solution of the matrix expo-

nential arising from the discrete state equations.

5. An Analytical Integration of the State Equation Using Interpo-
lated Input--uses polynomial approximations to the input signal and
integrates the state equations analytically.

Each of the sections is self-contained in that the developments

and conclusions are contained in each section.

The work presented in this report represents the initial efforts
and preliminary investigations of the topics covered. The actual appli-
cation of the various techniques has been limited to some rather simple
linear and nonlinear systems, while the emphasis has been placed on
theoretical investigations. This emphasis will shift somewhat in future
efforts as more complex and nonlinear systems are simulated with the
techniques which appear most promising as a result of the work presented
in this report.



11. DIGITAL AUTOPILOT DESIGN
Infroducfiog

The purposa of this part of the research is to establish criteria
for approximating continuous autopilots with digital autopilots. .t
is desired that the performance of an aircraft with a digita! autopi!ot
be similar enough to the continuous autopilot which it is to replace
that pilots cannot perceive a difference between them. This is the
first of three levels of work being considered in the investigation of
digital autopilots. The three levels are:

1. The problem of replacing existing continuous autopilots with
a digitally implemented autopilot that is as nearly indistinguishable
as practical from the continuous autopilot.

2. Design of autopilots using digital contro! methods based on

original performance specifications.
3. PResnaecification nf aircrzf+ control systems and use of modern

methods to control and optimize system performance for flight situations,

s.ch as optimal fuel contro! which existing autopilots do not provide.

Although the ideal situation is for the performance of new digital
autopilots to be identical to the continuous systems they replace, it is
easy to prove that, in general, it is not possible to find exact dis-
crete equivalents to continuous systems. The principal differences in

the output signals will be:

I. phase shift and attenuation due to the zero order hold at the

computer output.

2. phase shift and gain due to the digital representation of the

continuous autopilot transfer function.
3. aliasing of high frequency input components.
4., distortion components due to sample-hold operations.

Although these can result in major differences in the results of
the two implementations, it should be possible to make them conform to
commonly used control specifications to within any accuracy desired if

the sampling frequency of the digital system is made high enough; but,



unfortunately, this paramster is usually restricted because it is desired
to keep ths sampling frequency as low as practical to minimize computer
capacity. Sample frequency is a major parameter in the study.

A logical approach and the one used here is to use design specifi-
cations of continuous autopilot systems, but keep in mind also that the
origiral design was based on continuous control technology and should
take into account any new factors introduced by a digital controller.
The original specifications are not available but they undoubtedty [2.1]
consisted of such factors as phase margin, gain margin, magnification,
closed loop pole locations, rise time, overshoot, delay time, settling
time, mean squared error to stochastic inputs, final value of error,

dynamic tracking error, and bandwidth.

Investigation of Gain and Phase Shift Errors Due to Discretization

Discrete approximation techniques to represent continuous functions
in digital computers are studied and compared in the following. As
already stated, the objective is to design digital controllers which will
substitute for existing analog controllers, such that the digital con-
trollers are as similar in function as practical to the hardware they
replace. Evaluation on an input-output basis will make use of phase

and gain specifications.

Consider the autopilot transfer function for a commercial aircraft

as shown in Fig. 2.1. It is

Y(s) _ 36(s + 1.65)(s2 + 2.31s + 2.72)

Tty = 2.1)
(s + 0.62)(s2 + 5,625 + 3.1)(s2 + B8.45 + 36)

where U(s) is the Laplace transform of the pitch rate input signal and
Y(s) is the Laplace transform of the control signal. The Bode diagram
for the above transfer function is shown in Fig. 2.2. It is inferred
from the figure that the crossover frequency for the closed loop system
should be located at about w = 3 rad/sec. The crossover frequency is

of special importance and will be used in later discussions.
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Discrete Approximation

If G(s) is a continuous transfer function as shown in Fig. 2.3(a),

its discrete counterpart would appear as in Fig. 2.3(b) where

Y(s) = GC(S)E(S) (2.2)
Y¥(s) = [GC(S)E(S)]* (2.3)
» = " *
Yd (s) GA (s)E*(s) (2.4)

The ideal discrete system for the applications here would be one

that yields

y'(+) = y(t) for all t+ >0 (2.5)

However due to the discrete nature of the digital controller,

it is impossible to realize Eq. (2.5) exactly. The best possible dis-

crete system could give, instead,

y'(t) = y(¥) for t = 0,7,27, ... (2.6)

where T is the sampling period. Because

y'(nT) = yd(nT) n=20,1,2, ... 2.7)

in this case Eq. (2.6) is satisfied

or

1

y(nT) yd(nT) n=20,1,2, ... (2.8)

Y*(s)

*
Yd (s) (2.9)

Using Eqs. (2.3), (2.4), and (2.9),

[Gc(s)E(s)]* = GA*(s)E*(s). (2.10)

Taking the z-transform of both sides of Eq. (2.10),

Z{GC(S)E(S)} = GA(Z)E(Z) (2.11)
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or

Z{GC(S)E(S)}

GA(Z) S 3 (2.12)

where Z{+} indicates the z-transform.

In Eq. (2.12), D{(z) cannot be obtained independent of the input
function e(t). This justifies the previous assertion that an exact
digital equivalent of the continuous autopilot cannot be obtained. Thus
one must settle for a difference equation transfer function that gives
an acceptable approximation to the solutions for an arbitrary input,
e(t).

Various discrete approximation techniques have been proposed to
transform a previously designed continuous controller into a discrete
equivalent. These discrete approximation techniques can be divided
into three broad categories: (I|) numerical methods (2) operational

methods (3) input approximation methods.

Numerical methods generally provide a means of obtainihg accurate
approximation. However, since these methods generally take a great deal
of calculation time, their application to discrete approximations is
often limited, In the operational methods, every integrating operator
of the continuous transfer function is replaced by a discrete integrating
cperator in order to obtain the discrete transfer function. In the
input approximation methods, the input is assumed to be approximated
in a certain way, for example, by a stair-step function, or by straight
line segments, etc.

In the literature, Tustin's method is generally preferred among
the operational methods and the linear segment input approximation method
is considered to be one of the best input approximation methods. These
two methods will be used in the following discussion to show that the
degree to which the digital control system approximates the continuous
system is determined primarily by the zero-order hold rather than by
the discrete representation (i.e., discretization) of the continuous
controller transfer function. Various methods for discretizations are

compared later,



Tustin's Approximation

Tustin's method enjoys the merit of simplicity. This method is
usually quite accurate, does not introduce spurious solutions, and is
ideally suited for operational calculus operations due to Its cascading
property. To apply Tustin's method, first divide the numerator and
denominator by the highest power of s in the denominator, sn, then

replace ( é-)i by ( %%%;%% )i to obtain the discrete transfer function.

For G(s) consisting of a simple pole at -a,

) |
Car¢2) = Zyystin {5‘%‘:}

! Tzt
-7 r ) .2 z-] = T(z+1)
Tusﬁn\ a RIS 2(z-1) + aT(z+})
I+ = | + aezo—r-
s 2 z-1

- T(z + 1)
@T + 2)z + (al = 2) (2.13)

Straight Line Approximation

This technique assumes that the excitation can be approximated by
a series of straight-line segments as shown ir Fig. 2.4(a) for an
arbitrary function. The piecewise linear input may be applied to any
system by placing a sampie and a triangular hold (unrealizable first

order hold) before the norma! input as shown in Fig., 2.4(b). For the

el oI - e°TS)2 |
zZ Gh (s)Gls) ) =2 .
1 TSQ s +a
2
20 - 27Dy { | }
= T Z
s2(s + a)

_z(l - z~1)? Z{I/a , =178 | 1/a2 }
T 2 ) s +a

above example

G

AS(z)
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Figure 2.4 (a) Straight-line Segment Approximation
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Figure 2.4 (b) Application of Triangular Hold, Ghi(S)



I DL O O S N - +_l_.___£__?
Tz 2 z-n2 a2¢-l a2, _ g
L2 -2 [atz-e N1z - 20z - Dtz = &) + 20z - 2]
z a2(z - N2z - 6
LaTz -0 - - Dz -eT) + (z - 1)2
Ta2(z - &)
e +aT- nz+ (-6 - a1
- (2.14)
2 -a‘l':.
Ta*(z - e "~

for the stralght-iine approximation.

Gain and Phase Shift

An approximation of continuous autopilots with digital autopilots
should include matching the gain, phase shift, and steady state errors
of the systems.

The gain and phase shift of the digital and analog controllers in
the frequency domain will now be considered.

Referring to Fig. 2.3(b) and using Eq. (2.4),

(e, = ®( e
Y' (s, Gho(s)Yd (s) (2.15)
= * »*
Gho(s)GA (s)E*(s) (2.16)
or
Y'(jw) = Gho(Jm)GA*(Jw)E*(Jw) (2.17)

The frequency range of interest Is

w < ms/Z

where w is the input frequency and w_ Is the sampling f~equency.

S

12



If the sampling theorem is satisfied (and it will be for cases of

Interest here)

£*(ju) =% ECjw) for w < w_/2
Thus Eq. (2.17) becomes

. R
Y'(ju) = GM(JU)GA'(JH) TE(J&)

G
t
= Go) = 2 (w16, * )

(2.18)

(2.19)

(2.20)

For the continuous transfer function in Fig. 2.3(a)

Z o) = Gljw)

(2.21)

The transfer function ob*ained from Eq. (2.20) is to be matched as

closely as possible to the transfer function of Eq. (2.21).

For the gain
~ s
Y' . 2, (Jm) .
| & Gw| = .l—"ﬂT———I [6,*Cjw) |
and
| § Ga)| = [6Cjw|
Therefore
Py i .
l E—-(Ju) ) lGhO(JN)l.'GA*(Jm)l
| £ G| T GlJu)

For the phase shift

[ tw = [Sroti/T + [o* )

(2.22)

(2.23)

W < ms/2 (2.24)

(2.25)

I3 RmoDUCIBEﬁ‘Y OF THB

ORIGINAL

PAGE IS POOR



and

/%(jm - [G(ju) (2.26)

Therefore

Yr . Y
— (i) - = (i
/E (jw /E (jw)

i /Gho(jw)/T + / (6, *(ju) - G(jw)),

w < ms/Z (2.27)

As indicated in Eq. (2.24) and Eq. (2.27) the differences in the gain
and the phase shift of the digital controlier and the analog controller
can be divided into two terms; one is due to Gho(jm); the other is due
to GA*(jw)/G(jm). The former depends only on the sampling frequency,
whereas the latter would depend on the specific continuous transfer
function to be discretized and on the specific discretization technique
used as well as on the sampling frequency. It is interesting to compare

the differences due to the two terms above in a specific example.

Consider the transfer function

Gls) = —

s + |
Tustin's approximation from Eq. (2.13) with a = | is
5 T(z + 1)

AT T T T T2 oD

For fs =5, T=.2

6 (2 = 0.2(z + 1) _ 0.090909(z + 1)
A T2+ D F Nz -~z -0.818187
j0.2w
Gp* (jw) = 229(e ML (2.28)
el ¥ _ 0.818182



For fs = |0, T=.l

ooy _ 0.047619(ed0:1® + )
Gar™ L) = =515
eI0-10 _ 0.904762
For f_ = 20, T = 0.05
6% ) = 0.02439(e1%-% + 1)
AT 1005 "0 05122

The straight-line approximation from Eq. (2.14) with a

(T-1+eNz+l-(T+ e

G,.(2) =
AS Tz -eh

For fs =5, T=.2

Gas'?) = F2tz = 0818730 z - 0.
6. (o) = 0.093655(e3%°2* + 0.935508
AS el0-2% _ o 818731
For f_ = 10, T = .1
6 wi < 0:04837¢1% 1 + 0.96734)
AS I 70. 1w
e - 0.904837
For f_ = 20, T = 0.05
6. * o) = 0.02458(e9°° %% 4+ 0.98373)
AS el0:0%% _ 5 951229

For the zero-order hold

sin Mw/w,) LT

. 21
G (JN) = S e e
ho W H(w7ws)

15

(2.29)

(2.30)

_ 0.018731z + 0.017523 _ 0.093655z + 0.087615

(2.31)

(2.32)

(2.33)



sin n(u/ms)

6, i) = T « |—m7§r—| (2.34)

and

= - 2
{ G, CJw) n( 8 ) sgnlsin Wlw/w )] (2.35)

And, from Eq. (2.34)

G (jw) sin N(o/w_)
IZho 771 . S (2.36)
i nzm7m55 *

for the frequencies of interest,

sgn(sin n(m/ms)] = I

Therefore,

. I (2.37)
! Gho(Jm) = -II( o, )

The results are shown in Figs. 2.5, 2.6, 2.7, 2.8, and 2.9. Fig. 2.5
shows |G(jw)| and IGA*(jm)l as a function of frequency for different
sampling frequencies. The distinction between the two different approxi-
mation methods has been ignored because the differences are negligible for
the present purpose. This is discussed tater in more detail. |t is noted
that in the low frequency range, |GA*(jm)| follows |G(jw)| almost perfectly
and in the high frequency range, |GA*(jm)|follows |6(jw) | more closely as
the sampling rates get higher as expected. Figure 2.6 shows IGho| and
[65*(jw)/G(jw)| as a function of frequency. From Fig. 2.7 to Fig. 2.9

{Gho(j“) and GA*(jm) - /G(jw) are shown for different sampling

frequencies. It is noted that { Gho(jw) is much larger than

fGA*(j”) - (jw) over most of the frequency range for all sampling
requencies.

16
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Consideration of Figs. (2.5-2.9) shows that in this discretization
process the phase shift would be a more important determining factor
than the gain. For example, for fs = 5 samples/sec, at w = 3 rad/sec

- |7 (-]
{Gho(j ) 17.3
{ GA*(jm) - [ G(jw)

0° (straight-line app.)

-0.5° (Tustin's app.)

and
%ot 0.99
IGA*(jw)/G(jm)| = 0.975
Thus
/Gho(jm) + /GA*(jw) - [oGw  F-17.3°
and
w

The change in phase shift by ~17.3° would produce more significant effects
than the change in gain by 0.97 in most practical systems. |In fact, it
is found that over most of the frequency range of interest the phase

shift is more important than the gain.

It is important to note that in the range of useful frequencies the
change in phase shift due to discretization comes from the zero order
hold and one cannot choose between the above two approximation techniques
on the basis of performance. A designer would be justified in using the

simpler of the techniques.

1+ can also be demonstrated for general cases using Tustin's approxi-

mation that the valfue of GA*(jm) - ZG(iw) is negligible compared to

! Gho(jm). The demonstration proceeds as follows.

22



Assume 8 transfer function with a simple pole,

G(s) = =2
H = - -1 ﬂ
/ 6(jw) tan~! = (2.38)
Then, using Tustin's method
T z+1
A | +a e T z+1 2(z-1) +al(z+ 1)
2 z-1
joT
) T(ed"' + 1)
G.*(juw) = G,(2) . = r ——
A A z= e"""T 2(eJ6T4; 1 + aT(e""“T + 1)
T T
— = (2.39)
). RS ,r 2dtanC %1 4 aT
eimi7§ + e-de?Z

The phase angle of the approximation is given by

¥ = - -1 2 wT
Gy* (jw) tan~1[ ﬁ-'ran ( > )] (2.40)

Now, Eq. (2.40) should be compared wtih Eq. (2.38). Let 08, and 6, he
defined as

[

0 = ~tan-1 & 02 = ~tan"! [ fan( %117 (2.41)

Then
tan 8, - tan;
tanléz - 8y) = | + tan 65tan 6,

.2 wl w

T ar tan ( TT“) + ( 5..) >0

B 7 T .42)
1+ ( ﬁ tan -2- X 5- )

25 REPRODIICT ™.ITY OF THE
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Now show that the numerator of Eq. (2.42) is negligible. First,

mT/2=7-T=

2 )(rad)
(V]

S
= f °
= x 180 (2.43)
S

Referring to Eq. (2.37), w1/2 is the phase lag due to the zero-order
hold.

£ ( %} ) 2-5° (which should be done to realize a digital controller

that approximates the continuous case), the tangent of the angle may be
replaced by the angle so

tan -“’21 = wl/2

and from the numerator of Eq. (2.42)

2 wl w =~ 2 wl | w
- — — -_— T - + -
ar fanl &) + a aT a
=9 ,9:
=-zt3z=o0
ioeo' el - 62 ; 0
or
8) = 0, (2.44)

For the case where the transfer function has a pair of complex

poles, a similar development is possible.

Because Tustin's approximation has a cascading property, i.e.

[6;(s)6y(5)] = {Z [Gl(s)]}{ZT [(G,(s)]} (2.45)

ZTusfiJ Tustin ustin

the above approximation holds for general! transfer functions,

24



Further investigation of gain and phase differences introduced by
the discretization process for the example of the simpte first order
pole is summarized in Figs. 2.10 through 2.16.

Figure 2.10 shows the ratio |G,*(jw)/G(juw)| for several values of
system time constant as a function of the ratio of frequency to sampling
frequency. Tustin's method was used for the approximation. The normalized
magnitude of the zero-order hoid is also shown for comparison.

Figure 2.11 is a plot of the phase for the same conditions. This
figure reiterates the conclusion that the phase lag introduced by the
zero-order hold predominates.

Figures 2.12 and 2.{3 differ from Figs. 2.10 and 2.1l only in that
the linear segment input approximation was used for the system. Again
the phase lag of the zero-order hold predominates.

Figures 2.14 through 2.15 compare the gain and phase shift of
several discretization methods for two sampling frequencies. These
figures show that one of the simpler methods (Tustin) is also one of
the more accurate methods considered for this application.

Selection of the Simulation Increment (Computer Sample Period)

One of the most important criteria in the choice of a particula.:
digital simulation method is the length of the simulation increment re-
quired to produce a given accuracy. |t has been well documented in the
literature and in our efforts that somemethods require a smailer simulation
Increment than others fo produce equivalent results, and , in fact, some
methods are unstable for increments that produce good results in other
methods. Therefore the choice of the smallest simulation increment to
produce a given accuracy has been the subject of recent Investigation.

This topic is of particular importance when the simulation must be

performed in real time and on the smallest possible machine.

The structure of the problem of finding the smallest possible simula-
tion increment which w.il yield a specified accuracy for a given simulation

methcd suggests the possibility of using classic optimization theory. This

25
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was the approach taken by Rosko and Durling [2.2] and Rosko [2.3]. Their
results are currently belng implemented to aid in the cholce of simulation
method and for possible inclusion in the Simulation Design Package.

Rosko and Durling's method is based upon the assumption that round-off
errors have been or can be made negligible for the time increment to be
determined. The problem then is to find a compromise between computation
time and simulation error. The method will now be summarized.

Formulate a performance index which will mathematically reflect the
parameters to be minimzed and their relative importance. Functionally,

J = f(E’T' ...) (2-46)
where E is a measure of the simulation error and T is the simulation in-
crement to be determined. An example of such a performance measure is

- 8
J=E+ T (2.47)

where B is a constant weight.
For deterministic inputs the integral squared error for a system
simulated with interpolated intervals is given by [2.2, 2.3]

= a2 = - 2
E(H) = e2(1) [:[yi(f) y, (1) ]2t (2.48)

where y'(f) and yA(T) are the outputs of the ideal and approximated
systems respectively. Using Parseval's theorem we may express the inte-
gral squared error as

E() = 2 [° 0gq(w)du (2.49)

where oee(m) is the spectral density of the error.

For the case of discrete simulation where the error is considered
only at the sampling intervals, the summation of squared error is given
by [2.2, 2.3]

[}
= 2 = _'__ -1y,-1
E(nT) ngoe (nT) = o $E(@2E(" Nz 1z (2.50)
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which may be evaluated by summing the residues of the poles of the
integrand inside the unit circle in the z-plane.

Select a reasonable increment value, T = T,, and calculate the
initial value of the error using the appropriate error criterion. This
gives an initial value of the performance index.

8
J; = E) + . (2.51)
1 1 ‘r‘l
Calculate an estimated value of the error and performance index by

2 T

Ey = W(T) = Tr-El (2.52)
1 T=T2
LY _ "~ B
Jy = Ex + T (2.53)
T=T2
A necessary condition for optimality is
53
N M2 3 , T . .B -
Jz —ﬁ—-s-r(-f-i-El+T) _ =0 (2.54)
1=T,
which yields
BT: %
Ty = +( _ET.) (2.55)

Use T = T, to predict E using the appropriate error formulation.
Then calculate

8

Ig = Ep* £~ (2.56)
subject to the constraint
NP FPRE J1|
T C 7| < To (2.57)

where Ty is a constant to be chosen.

For all succeeding steps, m > 3, the following procedure applies:
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)

n (T)E
- = m i

where lLagrangian interpolation has been used, and

lIm =2 T(T-Ty1 ) (TeTp) ee- (T-Tm) (2.59)
and

nr=9 1M (2.60)

m df m  ° <

2) Now calculate

P - ~ 8
Jm = Em + T; (2.61)
min
3) Calculate Tm = Tm K using Newton-Raphson quasilinearization
where
ur D
T '=T_|-:———— for k = 1| (2.62)
M m Jreer )
m-
and
Jur )
T =T _—— for k > | (2.63)
m,k m,k‘l j"(T )
m, k-1
subject to the constraint
T -T
m'ka m k-l < 19 (2.64)
m, Kk

where tg is a chosen constant.

4) Calculate the predicted value Em using T = Tm and the appropriate

error formulation.

5) Calculate the performance index

- 8
Jm = Em + Tn: (2.65)
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subject to

< Tg (2.66)

The calculation terminates whenever Eq. (2.66) is satisfied.

It has been shown that the discretization method is unimportant |
from a performance view based on phase shift and gain considerations.
This conclusion will also be checked using the procedure presented above.

Ccnclusions and Work in Progress

The performance of a continuous autopilot which is implemented
digitally is affected so much by the zero order hold that the discreti-
zation method is a secondary consideration. Tustin is a relatively simple
method that is satisfactory. Computer speed (sampling rate) may be
established on the basis of the phase shift a designer will allow to be
introduced by the zero order hold. Phase lag decreases as sample speed
increases. Gain constants should be maintained to keep steady state
errors constant. The relative stability of the aircraft will be de-
creased by the digital implementation so the value of computer sampling
time should be based on the decrease in phase margins a designer is
willing to allow. This value can be determined through sensitivity
studies. Work is beginning on an example sensitivity simulation to
demonstrate how one can approach *he problem of specifying an allowable
change in phase margins. Optimum simulation increment work is also
underway to give credance to the above conclusions from another point
of view. Round off error work is to be done during the next year.
Further studies of discretization methods considered in this section
will be undertaken for more complex (higher order) systems with a
view toward possibly utilizing phase lead introduced by some of the
methods to offset phase lag introduced by the zero-order hold.
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I11. FREQUENCY DOMAIN SYNTHESIS OF DISCRETE REPRESENTATIONS

Analysis of Ilnear, continuous time systems Is frequently done in
the frequency domain. By use of the Laplace Transform, differential
equations are replaced by algebraic equations which, in general, are
simpler to solve. In designing a discrete time system to approximate
the performance of a particular continuous time system, It would be
helpful 1f some of the familiar analysis techniques could be utlllzed.

A design procedure s presented by which & discrete time transfer
function can be developed in the frequency domain. The resulting system
will have frequency domaln characteristics simitar to the contlnuous
time system from D.C. to one half the sampling frequency. 1t will also
be shown that the time domain performance of the two systems will be
similar. The chaiacteristics of the type of continuous time system
which can be most closely approximated using this design method will
also be discussed.

A simple design example will be presented to explain the methodology
of the design procedure. Following that, the frequency domain design
and time domain evaluation for the autopilot will be discussed.

Explanation of Design Procedure

The transfer function for this example is shown in Figure 3.1

F(s) = —2mr (3.1)
and the sampling frequency is chosen (arbitrarily) to be 20 rad/sec.
The design objective is to develop a discrete time transfer function
F(z), whose freguency domain character’stics will closely approximate
those of F(s) from0 to 10 rad/sec. A graphical version of the design
procedure will be presented to illustrate the method. Part or all of
the procedure can be automated.

The first step is to plot the magnitude of the transfer function
versus frequency, l.e., 20 log F(jw) versus log w. The plot need not
extend higher in frequency than one half the sampling frequency and
may go as low In frequency as desired.
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The next step is to define a complex variable p such that

Z -1
p = jl = 2-—+—|- (3.2)

From Z-transform theory

z = exp(sT)
and for real frequencies this hecomes

z = exp(juT) (3.3
where T = Zu/ws is the sampling period, and W is the sampling frequency
in radians per second. Substituting Eq. (3.3) into Eq. (3.2) yleids

p = jA = (exp(jwT) = 1)/ (exp{juT) + 1) (3.4)

8y factoiring and utilizing trigonometric identities, Eq. (3.4) can be
expressed as

P = jr = jsin(wT/2)/cos(wT/2) = jtan(wl/2) (3.5)

The magnitude plot of Eq. (3.1) is now re-plotted versus the fre-
quency X s.zh that the following relation is true (see Figure 3.2):

FGMD = F(jwT) (3.6)

A’\'=fanmiT/2

In other words the magnitude of F(jw) at a particular frequency w; is
mapped into a point on the F(jA) plot, having the same magnitude and

occurring at a frequency Ai' where

A, = fan(miT/Z) (3.7)

i
When o =0, A = tan’0) = 0, and when v = ms/2, A = tan(n/2) = ©», Thus,
the frequency ra-je 0 < w < ws/z maps into the frequency range 0 < X < =,

The next step is to synthesize an equation for F(p) by inspecting the
magnitude plot just made. The plot of F(jA) versus X will lcok similar
to the plot of F(jw) versus w at low frequencies. As X\ increases, [(j))

will approach the value that F(jw) has at ms/2 along a horizonte! asymptcte.
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By applying the relation that the actual magnitude curve differs from
the asymptotic curve by 3 dB at the break frequency, F(p) can be seen

to have a lag break frequency at A} = .325 and a lead break at A, = 1.91.
Therefore, F(p) has the form (p + A2)/(p + A;). Normalizing to unity
gain at DC, we have

I (p +1,)
F(p) = ( X2 ) W (3.8)

It can be noted that the break frequency A) = .325 corresponds to w = 2 rad/sec.,
the break frequency of the original F(s).

The next step is to make the substitution

into Eq. (3.8). Simplifying, this results in the expression:

A (lz+|)2+(l2-|)

A v NN P VD) (3.9)
Equation (3.9) can be written in the form
z + Kz
F(z) = Kl m (3.10)

where K; = (llllz)(lz + |)/(ll + 1), Ko = {Ap - |)/(12 + 1),
and K3 = (A} = 1M/(x + 1),

The frequency response of F(z) can be determined by setting Z = exp(jul) =
cos(wl) + jsin(wT). This results in the following two expressions:

maglF(z)] = 20 log{K;[(cosuT + K;)2 + (sinuT)2T%/[(cosuT + K3)2 + (sinwT)2T%)

angl F(2)] = ten"1[sinwT/(coswT + K3)] - tan~1[sinwT/(coswT + K3)]

Since z = exp(juT), these iwo functions can be plotted versus the original
frequency w. The magnitude plot of F(z) should be quite close to the

magni tude plot of F(s) from DC to ms/2. Since the numerator and denominator
of F(z) are of the same order in z, the phase shift will be zero degrees

at m5/2. To try and shape the phase shift of F(z) to more closeiy
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match F(s), an all-pass filter can be added to F(p). This results in
the new transfer function

Ay pta A3 - p

vy ( RN ) ( "3 TP ) (3.11)

Flp)

]

making the substitution p = (z - 1)/(2 + |) into Eq. (3.11) gives the

fol lowing:
(z + Kp)(z + K3)

F(z) = K IRz 7K (3.12)
where

Ky = (A /22)(h2 + 1)(A3 = 1)/ (X + DDAz + 1),

K2 = (A2 = 1D/(hy + 1),

K3 = (A3 + 1)/(A3 - 1),

Ky = (0 = 1)/ + 1),
and

Ks = (k3 = 1)/(x3 + 1) = 1/K .

The phase of this new F(z) will go to -180 degrees at w = mslz. The

actual phase characteristics of the original F(s) will determine how

high in frequency the phase of F(z) matches that of F(s). Figure 3.3
shows the magnitude of F(z), as well as the phase with and without an
all-pass filter.

Teo evaluate the time domain performance, F(z) can be expressed as
a ratio of polynomials

F(2) = K4[22 + (K + K3)z+ KoK3J/[22 + (K, + Kg)z + K,Ks]
(3.13)
Multiplying the numerator and denominator of Eq. (3.13) by z=2 yields

_ C(2)

F(z) = R(2T

= K01 + (G + K3zl + K327 8 /01 + (K, + Kg)z™! + K,Kg2~2
(3.14)
where C(z) and R(z) represent the output and input of the transfer

function, respectively. Cross multiplying Eq. (3.14) produces the following

expression,
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[+ (K + K527t + KyKsz™21C(2) = K[ + (Ky + K3)z=) + KyK3z~ 2 IR(2)
(3.15)
Applying the Real Translation Theorem from Z-Transform theory ylelds
the following time domain recursive equations:

ClnT] + (K + K )XC[(n - 1)T] + KK C[(n - 2)T]

= K [R(AT) + (¥ + K3)RC(n = 1DT] + KK3R{(n - 2)T]
(3.16)

2 2
cntl = - J a,cltn - DTI + Ky [ b.RL(n - DT] (GaD)
= i=0

where the a's and b's are obvious from inspection of Eq. (3.16). By
means of Eq. (3.17), the output C(nT) can be found for any input by
merely specifying the sequence R(nT) as the integer n varies over the

range of interest.

The location of the poles .nd zeros of F(p) and the location of the
all-pass filter break frequency can be optimized, using whatever per-

formance criterion desired.

Application to Autopilot

The design procedure outlined on the previous pages will now be
applied to the pitch portion of the continuous time autopilot. The

open-loop transfer function for this system is

H(s) =
36 .s2+2.31s +2.72 s+ 1.65 _ s% +7.255 + 8l
s2 + 8,45 + 36 s + 5,625 + 3.1 s + .62 1.12552 + 13,335 + 8I

(3.18)
The sampliing frequency was chosen to be 40 rad/sec. This allows the range
of interest to extend to approximately twice the highest critical fre-

quency of the autopilot.

45



The fictitious transfer function H(p) was synthesized in the

fol lowing manner:

I. mag[H(jw)] for 0 < @ < 20 was calculated, as well as the
frequency A, using the relation A = tan(wT/2).

2. A plot of mag[H(jA)] versus A was made (Fig. 3.4).

3. Real poles and zeros of H(s) at w; were transformed into real

poles and zeros of H(p) at Ai' where xi is given by Eq. (3.7).

4. Complex roots of H(s) with undamped natura! frequencies of w,
were transformed into complex roots of H(p) with natural frequencies also
given by Eq. (3.7). The values of the damping ratios were preserved in

synthesizing H(p).

5. An initial value for a second order real zero was made by
inspection of the magnitude plot made in step 2. This additional term

is due to the asymptotic approach of H(p) to the value of H(s) at

m=ms/2.
6. The substitution p = (z - 1)/(z + |) was made in the expression
for H(p).

7. The magnitude and phase plots of H(z) versus w are made.

8. An initial choice for the all-pass filter break frequency was

made, and the phase curve re-plotted.

At this stage the magnitude curve of H(z) differs from that of H(s)
by a maximum of 1.7 dB at a frequency of 6.5 rad/sec. The phase curve ot
H(z) has the same general shape as that of H(s) up to approximately 15
rad/sec, but has an error of about 17-22 degrees from 8 to 15 rad/sec.

It was decided at this point to optimize several parameters of H(z).

The locations of the second order real zero added during the design
process and the term resultinc from the single real pole of H(s) 1t
w = 5 rad/sec were simultaneously optimized. The performance criterion

used was the mean absolute error between the frequency domain magnitude
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of H(s) and the magnitude of H(z) over the frequency range 0 to ms/Z.

The values of these two parameters were independently stepped through

the range 0 to 20 in intervals of 0.8 so that essentially all space

was spanned. Using the expression for H(z) with the two optimized parame-
ters, the break frequency for the all-pass filter was optimized in a

simi lar fashion. The performance criterion used was the mean absolute
error between the frequency domain phase curve for H(s) and that of

H(z).

The frequency characteristics of the final design are shown in
Figures 3.5 and 3.6, Figure 3.5 shows the magnitudes of H(s) and H(2)
plotted versus the rea! frequency w. The maximum magnitude error is
approximately 1.28 dB which occurs at 20 rad/sec., and the mean absolute
magnitude error is .342 dB. Figure 3.6 shows the phase shift curve for
H(s) and the phase shift curve for H(z) with and without the atll-pass
fitter., For the curve with the all-pass filter over the frequency range
0-16 rad/sec. the following error information was obtained. The maximum
phase error between H(s) and H(z) was 12.74 degrees, occurring at 16
rad/sec., and the mean absolute phase error was 3.86 degrees. Over
the full frequency range 0-20 rad/sec., the maximum error was 42.4
degrees, occurring at 20 rad/sec., and the mean absolute phase error

was 8.6! degrees.

The optimization procedure was carried out again; this time, using
the mean tquared error criterion on the magnitude curve and the mean
absolute error on the phase curve. The maximum magnitude error was
1.17 dB, and the mean absolute magnitude error was .364 dB. Over the
frequency range 0-16 rad/sec., the maximum and mean absolute phase errors
were 12.34 degrees and 3.52 degrees, respectively. For the frequency
range 0-20 rad/sec. the maximum and mean absolute phase error were 42.4
degrees and 8.30 degrees, respectively. In each case the maximum error

occurred at the highest frequency in the range specified.

Trying to use the mean squared error criterion to optimize the
location of the all-pass filter produced poor results when applied to

this system. With an all-pass filter, this design procedure produces a
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phase shift of -180 degrees at mS/2, regardlass of the phase shift of H(s).
For the continuous autopllot the phase shift at 20 rad/sec. is =137.6
degrees. WIith the sampling frequency fixed, nothing can be done to reduce
this large error at ms/2. Since the mean squared error criterion tends

to accentuate large errors, applying this criterion to the phase curve
results in increased errors at low frequencies without substantially
reducing the errors near m5/2.

For the optimlization schemes tried i+ appears that for this system the
mean squared magnitude error and mean absolute phase errotr criteria pro-
duced slightly smaller errors than the mean absolute magnitude and phase
error criteria. The transfer functions for the two realizations are
shown below. In each cas2 they are of the form:

_ KN(2)
H2) = By
N(z) = Hy(z) « Ha(z) « H3(2) * Hy(2) » Hq(2)
D(z) = Hg(z) « Hg(z) » He(z) » Hg(2)

In the table below the heading MAM/MAP indicates the mean absolute
magnitude and mean absolute phase error criteria, and MSM/MAP indicates

the mean squared magnitude and mean absolute phase error criteria.

MAM/MAP MSM/MAP
K 7.88489 E-02 7.73779 E-02
Hy(2) z - .769409 z - .769409
Ha(2) 22 - 1.63918z + .69577 z2 - 1,639182 + .69577
Ha(2) z2 - .223826z + .4308 22 - 223826z + .4308
Hy(2) (z + .,230133)2 (z + .223527)2
Hg(2) (z - .907063)2 (z - .90706%)2
Hg(2) z - .470564 z - .486006
Ho(2) z2 - .750535z + .276885 z2 - .750535z + .276885
Hg(2) z2 - .280832z + .191517 z2 - ,280832z + .191517
Ho(2) (z + 2,72379)/(z + .367135) (z + 2.72379)/(z + ,367135)
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Hy(2) representg the second order real zero added during design, Hg(2)
is the single real pole of H(s) whose locatlion in H(z) was optimized;
and Ho(2z) is the all-pass filter.

Design Considerations

Several factors concerning this design procedure should be mentioned.
First, when H(z) is expressed as a ratio of polynomials, the degree of
the numerator and denominator in powers of z will be equal. The degree
of the polynomials in z will be equal to one, plus the highest degree of
the polynomials in H(s)., The additional power of 2z is due to the ali-
pass filter. In this example H(s) was of seventh degree in the denominator
and fifth degree in the numerator. H(z) was of eighth degree in both
numerator and denominator. Bescause of the equal degrees of the numerator
and denominator in H(z), the phase shift at ms/Z will be 0 degrees if no
all-pass filter is used, and -180 degrees if a phase lag all-pass filter
is included. A phase lead all-pass filter, (A + p)/(A - p), produces
an unstable condition. In the freguency domain a good fit can be obtained
for the magnitude curve over the range 0 < w < w5/2. Ffor the phase
curve the closeness of fit depends on the phase characteristics of the
continuous system.

Time Domain Evaluation

In the following discussion concerning time domain performance the
H(z) obtained from the mean absolute magnitude and phase error criteria
will be used. This H(z) will be referred to as the DISCRETE approximation
to H(s).

To obtain the time domain response of the continuous time autopilot
a fourth order Runge-Kutta-Gill numerical integration was performed. The
integration step size was chosen to be T/10. This step size provides
approximately 48 samples per period of the highest damped natural fre-
quency in H(s) and 12 samples per time constant for the shortest expo-
nential time constant. The inputs chosen were the step function and
sine waves of each of the integer radian frequencies from | to 20 rad/sec.,

inclusive.

52



The time response of the Tustin approximation tn the autopilot was
obtained by expressing H(s) as a ratio of polynomials and making the
following substitution:

L K_ T+ K
(‘é‘) -[frz'_|sJ
The resulting expression was put in the form of a recursive equation
and solved for the same set of inputs previously mentioned.

The H(2) obtained from the design procedure described was also
expressed in recursive form and solved for the time response. For
each of the three sets of solutions the outputs were calculated over
the time range 0-100 T. For the Runge-Kutta solutions this means that
ten integrations will be performed per outrut sample.

Using the Runge-Kutta solution as a reference, the mean squared
errors of the Tustin and Discrete approximations were calculated for
each of the inputs and averaged over the sinusoidal inputs. Figure 3.7
shows the errors as a function of input sinusoidal frequency. Each of
the approximations had negligible steady state error for the step
input. The table below lists the error data for the two approximations.
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Figure 3.7 Mean Square Crror Plot for Discrete Approximation

and Tustin's Approximation
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MEAN SQUARE ERROR

RAD/SEC TUSTIN DISCRETE
| - 16553969 E-05 +24048390 E-03
2 .28388786 E-05 .16118844 E-03
3 .22027003 E-04 .16690678 E-02
4 .22509128 E-03 .2850k575 E-02
5 .84790011 E-03 .29299688 E-02
6 . 15901896 E-02 .17630448 E-02
7 .17861110 E-02 57113966 E-03
8 . 14286007 E-02 .78087308 E-04
9 . 10556364 E-02 .46068448 E-04
10 . 10220778 E-02 .94572395 E-04
] . 13234237 E-02 .95276045 E-04
12 .17965967 £-02 . 74684822 E-04
i3 .22863912 c-02 76157714 E-04
14 +26955963 E-02 . 11930201 E-03
15 «29781393 £-02 .20891043 E-03
16 .31201926 £-02 .34898954 E-03
7 .31253800 E-02 .54962620 E-03
18 .30092672 €-02 .8265884| E-03
19 .27900444 £-02 . 11962247 £-02
2C «22923737 €-02 .22923735 E-02

Averaging over the 20 sinusoidal inputs yields the following data:

. 16706066 E-02
.83237062 £-03

Tustin Error

Discrete Error
For the step input the errors are:

.49399356 E-03
.99913922 €-03

Tustin Error

Discrete Error

REPRODUCIBILITY OF THE
ORIGINAL PAGE IB POOR
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For the sinusoidal Inputs the average mean squared error for the
Discrete approximation is one half that of Tustin's approximation. The
greatest inprovements over Tustin's.method Ile In the frequency range
8~17 rau/sec. In thie range the magnitude curve of the DISCRETE system
flts that of the cc ‘tinuous system very closely, with a maximum difference
of .34 dB. The phase cuives also have a good #it over most of this
frequency range, with less than 10-degree error from 8 to 15 rad/sec.
and 18-degree error at i7 rad/sec.

Over this ssme frequency range, the Tustin frequency domain magnitude
error varies from 2.1 to 15.7 dB, referenced to the exact magnitude func-
tion. The phase shift error in this frequency range averages 16 degrees,
with a maximum of 32 degrees at 17 rad/sec. and is 25 degrees at 15 rad/sec.

Conclusion

A procedure has been presented by which a discrete time system can
be designed to have frequency domain characteristics similar to that of
a continuous time system. For the magnitude curve a close fit can be
obtained over the frequency range O to ms/2. For the phase curve the
closeness of fit depends on the phase characteristics of the continuous
system. The design procedure can be carrlied out elther graphically
or by computer. The location of all critical frequencies in H(p) and,
thus, the form of H(z) could be optimized, hb2sed on a number of different
performance criteria. An Improvement in time domaln performance in the
middle and upper frequcicies was obtained, compared with Tustin's method,
with a degrzdation of performance in the low frequencies.

i+ appears that frequency domain methods, and the particular procedure
described here, are valid design approaches. The characteristics of the
continuous time system being modeled and the input frequency ranges of
interest will determine which approach is best.
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IV. SUBSTITUTIONAL METHODS

An investigation into the suitablility of various substitutional
formulas and technlques for real time simulation Is being conducted.
The study is divided into two phases, the first being concerned with
linear systems and the second with nonlinear systems. Results from the
first phase were reported in the Semi-Annual Report of September 1975
and will not be repeated herein. Progress to date in the second phase
of this work Is the subject of the remainder of this section.

Several methods for digital simulation of linear systems have been
investigated, and results show that the I8M method is probably the best
Iin terms of error and computation time. Present efforts are being
directed at the study of nonlinear systems.

Along with the substitutional methods, other methods, such as IBM,
Optimum Discrete Approximation and Discrete Compensation, are being
considered. There are no other methods currently available from |itera-
ture and publications.

Comprehensive studies of simulations of nonlinear systems, such as
error analysis, selection of simulation increment, etc. is currently
beyond the state-of-the-art. This is because nonlinear systems are
difficult to classify. Comparisons of these digital simulation methods,
therefore, are largely experimental. Several systems with different
degrees of complexity and nonlinearities will be studied before any
conclusions are reached.

A simple and "slightly nonlinear" system was investigated, and the
results showed little effect by the nonlinearity on the overall system
response obtained with different methods. Another system is currently
under investigation and will be simulated as soon as the design is
comp leted.

The following paragraphs suggest the methodology being used to
develop the necessary computer software for analyzing various procedures.

I. 18M method: The objective is to derive transfer functions of
Fig. 4.1 such that the poles of the individual transfer functions (Gy(z)
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and G,(z)), as well as the poles of the overall closed loop transfer func-
tion, are correct. This is done by matching the closed-loop eigenvalues
and the static galns of the continuous and discrete system models.

Poles of Gj(2) and G3(2) are in the same location as G)(s) and
Ga(s) In the s-plane; therefore, the transient response will be correct.
This characteristic is not adequately preserved in other substitutional
methods (Tustin, Boxer-Thaler, Madwed, etc.). Note that G;(z) and G,(2)
are not the Z-transforms of Gy(s) and Gy(s) but are transfer functions

to simulate the continuous response.
The design procedure is as follows:

(a) Replace the continuous transfer functions by the discrete
transfer function, using the Z-transform. A single-period
delay is inserted in the feedback paths to insure realizability.
This delay will be compensated for in the final model.

(b) For each transfer function the static gains are matched
between the discrete and continuous blocks. The final
valuz theorem is applied to find the gain necessary to
equate the static gains between the two transfer functions.

(c) Each nonlinear element is repiaced by a nominal gain, and
the closed loop eigenvalues of the continuous and the
discrete systems are made equal by insert:ng a gain in the
forward loop. This is the most tedious task for a compilex
system of order higher than 4 and with a multiple input/output.
Fortunately, this mechanism can be implemented on a digital
computer, as proposed in an I1BM report (Numerical Techniques

for Real-Time Digital Flight Simulation). This program will

be discussed in more detail in a later part of this section.

(d) Finally, the steady-state gains of the over-atl closed loop
system are matched. The discrete system is also matched to
either a specific input or its approximation. An input
transfer function will be attached in front of the discrete
system. There are two ways of approximating the input:
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one by a stair-step function (zero order hold); and one
by straight line segments (first order hold).

Input approximation by a stair-step function: To find the

Input transfer function, equate the Z-transform of the over-
all continuous system with the transfer function of the
over-all discrete system. Since the zero-order hold will
introduce a half-period lag, the stair-step approximation
must be designed with a half-period advance so as to obtain
the correct simulation.

Input approximation by straight-line segments: The same pro—

cedure is applied as above, but no compensation for the time
shift is necessary, A summary in block diagram form is shown
in Fig. 4.2.

Programming details for matching eigenvalues in the IBM method are
as follows. As mentioned earlier, matching eigenvalues of complex con-
tinuous and discrete systems is a formidable task which cannot be per-
formed by hand. |t has been proposed that computer programs be used to
plot root loci of the systems and, thereby, determine the gain required
to match their pole locations.

There are two possible approaches for using a digital computer to
compute root loci. One is to determine the characteristic equation as
a function of loop gain and solve it for various values of loop gain.
in a multiple loop complex system this is not always possible. There-
fore, it is desirable to have the computer derive the characteristic
equation. Another approac* is to apply Evan's rule directly with the
aid of the computer. Thi. method, however, does not fully take advantage
of the high speed computer.

IBM has developed a method based on Evan's rule and used the com-
puter efficiently at the same time. The program developed by IBM allows
the user to find root loci of systems (discrete or continuous) directly
from the block diagram. In the very near future a similar program which
can be used on our computer will be developed so that more complex systems
can be simulated.
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The principle of the program is as follows. The characteristic
equation of the system shown in Fig. 4.3 is:

KG(s)H(s) + | = 0 (4.1)
or
G(s)H(s) = =1/K (4.2)

Equation (4.1) is satisfied only if G(s)H(s) is real, since K is real.
Furthermore, if a complex number S = ¢ + jw is substituted into G(s)H(s),
the result will be another complex number q = u + iv. Therefore, the
solution of Eq. (4.1) is all s that will give v = 0 and K = -1/U. It

can also be shown that for any path crossing a locus, u will change sign.
Therefore, the left-half plane of s is scanned until a change in sign of

v is observed, then the point lying on the locus can be found by iteration.
The same principle can be applied for a discrete system to find its

root locus.

1t has been reported that the developers of the IBM method success-
fully simulated in real-time complex, six-degree-of-freedom space vehicles
and aircraft with considerable improvements over other methods. For
example, for the same degree of accuracy, this method reduces the compu-

tation time by 90 to 95% over the Runge-Kutta method in several cases.
2. Cptimum Discrete Approximation:

The objective of this design technique is to approximate each element
of the transfer function so that the summation of squared error is minimized,
This technique eliminates the need for inserting a period delay in the feed-
back path, since the realizability has been taken into account during the
design process of the discrete transfer functio-. Each discrete transfer
function is considered to consist of a tanuem connection of two elements,
Fi1(2) and Fp(z). Fa(z) is called the *tixed portion, and it can take the
form

Fo(z) = Z°P (4.3)

where > = 0,|. Whether or not F~(z) = | or Fy(z) = 2”1 depends on the
system under consideration., Trancfer functions where the degree of the

numerator is lower than the degree of the denominator are called closed-
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loop realizable to ensure the realizability of the whole system. There~
fore, in designing the discrete transfer functions we initially select
Fa(2) = 1. If none of the discrete transfer functions furn out to be
closed-ioop realizable, then we pick the simplest one to be redesigned
with Fy(2) = Z°1, This will greatly simplify the work invqlved.

Sage and Burt have shown that the discrete "optimum" transfer func-

tion is
Fa(Z-HHu(z=1A(2)
{[FZ(Z)FZ(Z'I)U(Z)U(Z'l)]_}p+
Fiopt(Z) = (4.4)
[F2(2)F (2" Hu@uz-H],
with
A(z) = Z[G(s)U(s)] (4.5)

where U{t) is a test signal and where [-]+ denotes all poles and zeros
within the unit circle, [-]_ denotes all poles and zeros outside the
unit circle, and {-}p+ is the portion with poles within the unit circle.
The procedure can be summarized as follows:

I. Select a test signal, U(s), usually either a unit ramp or a
unit step.

2. Design each discrete transfer function, using the F,opt(z)
equation. Let F2(z) = | in each case; and, if Fiopt(z) is not closed-

loop realizable, then redesign it with Fa(z) = Z7!, Then

G(z) = Fyopt(z)Fy(2). (4.6)

The procedure above does not take into account the nonlinear characteristic
of the system. It will work adequately for a slight nonlinearity. |if

the system is decidedly nonlinear, the approximation error can be reduced if
we make use of the fact that the system is actually nonlinear in determi-
rning the "optimum" discrete approximation. We can expand the method

above, using gain parameters before and after the nonlinearity. These

gain parameters will be adjusted during the simulation process.
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3. Discrete Compensation:

In substitutional methods it is necessary to insert a period delay
in the feedback path to ensure reallizability. This may shift the pole
locations in some systems. The IBM and Optimum Discrete Approximatior
methods compensate this delay in the design process. In the Discrete
Compensation method the closed-loop transfer function is discretized,
using any discrete integrator, but improvements are made through a
compensator to adjust the eigenvalues of the closed-loop system.

fFor example, take a simple system, such as shown in Fig. 4.1 and

let
GI(Z) = Gl(S) i (4.7)
S = some integrator
Gg(Z) = Gz(S) i (4.8)
S = some integrator
H(z) = H(s) | | (4.9)
g = some integrator
We then discretize the whole system as
63@1(5)62(5)
(4.10)

GA(Z) =

T+ H(S)B367(5)6,(5)

g=mmim%mmr
where 53 is the nominal gain of the nonlinear element. Insert a compensa-
tor after the input of the discrete system and compare it with GA(z) to

obtain the coefficients of the compensator, whose form is

bo + byz 4  +b 2"
D(z) = - (m < n) 4.11)
a0 + alz + + anz
G1(2)6(2)G,
G,(2) = D(2) (4.12)

| + G36,(2)6,(2)

The final form is shown In Fig. 4.4,
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1f further accuracy is required (at the expense of more computation
time), the coefficlents of D(z) can be adjusted, depending on the in-
stantaneous galn of the nontinear element; that is, instead of using
53 as a nominal gain to obtain fixed coefficlients of D(z), we can make
the coefficients of D(z) a function of B3, where G; can be determined
by direct measurement ~r by Interpolation.

Summar

In the three mathods considered above the D}lscrete Compensation Method
is the best in terms of design efforts, 1+s drawback is excess computa-
tion time, especially with the coefficient adjustor. Once the computer
program for the |BM method is completed, the IBM method may be the logical
choice, even though the Optimum Discrete Approximation may be more accurate
for decidedly nonlinear systems. However, no final conclusions can be
drawn at this time,

Future Tasks
e Developing a computer program to aid the design of the I1BM method.

@ Further sear-h and studies of Sage's method, using calculus of

variations and other techniques for a nonlinear system.

e Simulations of various nonlinear systems with special attention
given to the criteria mentioned above, observing possible effects
of a certain nonlinearity on a certain method.
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V. USE OF PADE APPROXIMANTS TO THE MATRIX EXPONENTIAL FOR
COMPUTER SOLUTIONS OF STATE EQUATIONS

Introduction

In system theory, there Is a large class of problems which may be
phrased in terms of |inear time-invariant differential equations, and
which lend themselves to straightforward solutions., A second class, at
the opposite end of the spectrum, consists of problems characterized by
behavior which includes large time variation and s*rong non-linearities.
There is a middle ground, however, consisting of a class of problems in
which the time-dependent parameters vary relatively slowly, with weak
non-linearities. In these, it may be necessary (or merely desirable)
to include the effects of t+ime- and state-dependent variables, and at the
same time undesirable to utilize algorithms used normally on systems of
large computational complexity. The results of the theory of linear time-
invariant systems may be used, with proper modification, to approximate
this class of systems very closely.

The matrix differential equation
% = Ax + Bu (5.13
where A and B are constants, has the well known solution
x(t + T) = G(Tix(+) + H(THu(t), t = kT, k =0,.,2, ..., (5.2)
where T is taken o satisfy the Nygquiet criterion on u,
G(T) = exp(AT) = I + AT + (A2T2/.1) + ... , (5.3)
and

H(T) = jl exp(At)dtB = [(IT + (AT2/21) + (A%T3/31) + .. B. (5.4)

The last term may be reduced to
H(T) = A~1[(exp(AT) - I)J8, (5.5)

if the inverse of A exists., The above may be derived directly from the
Tayior series of x(+ + T),
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A more general statement is true where A = Alx,t) and is a siowly

var, ..g function of both x and t. Fur the class of problems where the

system timo-dependence and non-linearities are small, we may still use
tThe matrix exponentail to approximate the system's behavior [S5.1]. That

is,
x(t + T) = exp(A(x(T),H)TIx(t) + [: exp (A(x(T),t)t)dtBu(t). (5.6)

Allowing A to vary with x and t, however, suggests consideration of
efficient techniques for computation of exp(AT). In some cases, simple
summation of the terms of the power series representation will be suffi-
cient since A may vary so siowly that only occasional updatings of exp(AT)
are necessary. In other cases, it may be necessary to recompute exp(AT)
at each sampie point to achieve the desired accuracy. The Padé approximants
to exp(AT) wnich will be considered offer, in some types of problems,
significant advantages in computational speed and accuracy over the power
series representation.

Definition of Pade Approximants

A Pade approximant to & scalar power series F(z) is a ratio of two
polynomiats P(z) and Q(z), of cider p and q respectively, abbreviated
(p,q). Its significant feature is that the power series expansion of
(p,q) is identical with that of F(z) up to and including the coefficient
of zN, where N = p + q is the order of the approximant. There are N + |
Pade apprcximants of order N, and they are unique [5.2]. For example,
the three approximants for N = 2 and F(z) = exp(z) are:

(2, 0) = | + z + z2/2
(I, D=0+ 2/2/0 - 2/2); |z} <2
(0, 2) = /(1 - z + 22/2) |z] < 1.414 (5.7)

Simi lar statements may be maile of Padé approximants to & matrix power
series; for example, the (I, 1) approximant tc ~xp(AT) would be:

(1, 1) = (1 = AT/2)" (1 + AT/2) = (1 + AT/2)(1 - AT/2)" (5.8)
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Of the general class of Pade approximants, some are more effective
computationally than others. In general it requires no more computation
to calculate a (P, P) Pade approximant than a (P-M,P) or a (P, P-M),
where M < P, Because the (P, P) approximant is accurate through more
terms, it is the most beneficial form to use. In this paper we shall
compare (1) the truncated series (N, 0), and, (2) those in which p = q,
i.e., (1, 1), (2, 2), (3, 3), and so forth. The scalar approximants
(2, 2) and (3, 3) for exp(z) are:

(2, 2) = (0 +2/2 + 22/12)/C) = z/2 + 22/12); |z| < 3.464  (5.9)

(3, 3) = (1 + z2/2 + 22/10 + z3/120)/C1 - 2/2 + 22/10 - 23/120);
|z] < 4.644  (5.10)

I+ Is shown in Appendix A that the error involved in using a Pade
approximant to the matrix series exp(AT) is a linear function of the
error in approximating the scalar series exp(AmT) where lm is the
magnituce of the maximum eigenvalue of A. This allows discussion of
accuracy in terms of the scalar series exp(AmT), with results which
carry over directly to the matrix series approximation.

Accuracy vs. Required Computation

The two classes of approximations for the exponential were compared
directly, using three criteria: (1) the numer of matrix operations re-
quired for the approximation to exp(AT), (2) the percent error in terms
of the scalar approximation of exp(AmT), and (3) the allowable range of
AmT for which reasonable results could be achieved. It will be shown
that the inclusion of higher-ordered terms in the (p, p) type of approximant
reduces errcr, extends the range of AmT, and is in general more efficient
than the corresponding (p + p, 0) truncated series.

A matrix operation may be defined as a multiplication or an inverse;
each requires about n3 multiplications and divisions, where n is the order
>f the matrix [5.3]. This is an effective standard, since the matrix
manipulations dominate the calculation time. By this standard, the (N, 0)
series requires N-| matrix operations, while the (p, p) series requires
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p + | operations. For example, the (2, 2) and the (4, 0) both require
three matrix operations; however the (3, 3) uses only four while the
(6, 0) requires five operations. For systems of large order, this may
be significant,

A computer was used to calculate % error in the various forms of
approximations to exp (AmT). Some of the more important features are
demenstrated in Figs. 5.1 and 5.2. For example, in Fig. 5.1, for AmT = .9,
the (4, 0) truncation yields about .04% error. The (2, 2) gives approxi-
mately .004% error, or about one order of magnitude improvement. For
targe values of AmT the results are even more dramatic. For AmT = 2.0,

a (9, 0) approximation gives .l7% error compared to the .15% error of the

(3, 3) approximation, which also affords a savirgs of four matrix opera-
tions. This alone may result in a considerable reduction in computer

time. Fig. 5.2 shows the maximum allowable values of |AmT| for given

amounts of error. The (p, p) type of approximant is seen to have consistent-
ly greater range than its corresponding truncated series.

Previously, it has been necessary to choose IAmT| to be relatively
small in order to achieve the required accuracy with a short series
approximation. Using the Pade {(p, p) approximants, there is much more
room for choice. Larger system eigenvalues may be included in the
problem statement, or a longer sample time T chosen (subject to the
Nyquist rate on u(t)), and the desired accuracy may still be achieved,

or bettered, within the context ¢f a real-time computer simulation.

Summary

In summary then, it has been shown that the! (p, p) Pade approximant
to the matrix exponential exp(AT) is a useful tool in control system
simulation and operation. |t has the advantages of greater accuracy,
larger range, more flexibility, and in some cases grezter computational
efficiency than the truncated series approximation.
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Appendix A
Relation Between Matrix Series and Scalar Series

To obtain a measure of the error introduced by using approximations
for the matrix exponential, one can transform to the normai coordinates,
i.e.
= 51’

>
h

2nd
x=5x .
It witl be assumed that A has distinct eigenvalues. This is not

overly restrictive since any matrix with repeated eigenvalues may be
approximated arbitrarily closely by one with distinct eigenvalues [5.4].

The matrix exponential operating on a vector may be written as

exp(AT)x(t) = SS~lexp(AT)SS 1x(+)

sS™I(1 + AT + ;—Asz + —=—)55~1x(+)

S(s-11S + STIAST + %S'lASS'lASTz + —==)5"1x(4)

S(1 + AT +%12T2 + =)

Likewise one can write the (1, 1) Pade approximants as

- -1 ! = cc=l¢y - ) am)m2 I -1
(1 > AT)TA (1 + E-AT)x(f) SSTH > AT)"* (1 + 7-AT)SS x{(t)

-1 1 | A272 4+ ——=)55-1 iR -1
ST + > AT + 3 AT + )SSTHUL + 5 AT)SS™  x(t)

s(s~1is + 2'- S-1AST + lf- s~1ASS™1ASTZ + ——=)(S-11S + ;- S=1AST)S ™ Ix (4

| L vor2 . | ~
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The other ordered Padé approximants follow in a like manner. In
each case the approximant as well as the exact expression for exp(AT) is
a diagonal matrix in the normal coordinates. Also each diagonal element
is a function of one and only one eigenvalue. This fact makes it possible
to compare different approximations to exp(AT) in the normal coordinates on
an element by element basis. Also, although we have not proved it mathe-
matically, our numerical results indicate that the maximum error occurs in
that element corresponding to the eigenvalue of maximum value. Thus
one can test for the accuracy of matrix polynomial representations of
exp(AT) by testing the corresponding scalar polynomials and utilizing
the eigenvalue of the A matrix having greatest magnitude.
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Appendix B
Pade Approximants for H(T)

One further use for the Pade approximation may be considered here.
It was shown above that 1f A~} exlists, then

H(T) = A"l exp(AT) - 1]B.

The A matrix may be singular, however, and no convenient closed-form
expression can be used for H(T). For example, a zero eigenvalue in A
will impose this restriction. However, H(T) may be written

H(T) = TCI + AT/2 + A2T2/3! + -—-)B.
This series written in scalar form Is

|+ w/2 + w2/3! + ===

where w = AmT. This series has the scalar Pade approximants:

(0 +w/6)/01 - w3); |w] <3

(a, 1

(2, 2) = (1 + w/10 + w2/60)/(1 - 2w/5 + w3/20); |w| < 4.472

(1 + w/18 + w2/42 + w3/840)/(1 - 3w/7 + w2/14 - w3/210);

(3, 3
[w] < 5.649

Use of these approximants parallels the discussion above for the

matrix exponential.

77



Vi. ANALYTICAL INTEGRATION OF STATE EQUATIONS,
USING AN INTERPOLATED [INPUT

One approach to solving differential equations discretely has been
to use the state equations, along with polynomial appro» Imations to the
input signal. The coefficients of the polynomial are determined by the
value of the input signal at the sample times. Once the oolynomial
is chosen, the state equations can be integrated analytically. One
important feature of this approach is that the system is modeled exactly.
The approximation is in sampling the input. The various polynomial fits
to the input serve as interpolators.

Using a first order pélynomial to represent the input, one finds
that

_ AT NT A(NT-1)
Xe=e Xt Jinenyt @ BU(t)dt (6.1

can be approximated by

AT _ .:.—A"?-(eAT - sy

_ AT a1 4 -2 AT _ -1
Xy =€ Xy t AT+ AT sy, + [A7le
(6.2)

Expressions for the zeroth order polynomial fit and the 2nd order
polynomial fit have been determined and are reported along with more
details on the method in our Semi-Annual Report of September, 1975, on
this same project, University Report No. EE-4041-101-75.

Because our efforts have been directed in other areas, we have not

yet obtained test resuits on the accuracy of this technique.
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